食品中の金属元素の測定法について - 前処理法の検討-

福島 悦子, 佐伯 政信

Atomic Absorption Spectrometric Determunation of

Metal Elements in Food

-Investigation of Pretreatment-

Estuko FUKUSHIMA and Masanobu SAEKI

1 はじめに

食品中には栄養学的に重要な金属元素が、多数含有されている。近年この金属元素と疾病との関係も問題視されていることから、食品中の各元素含有量を正確に把握しておくことは、重要である。

金属元素の測定法は、原子吸光法が一般的であるが、 測定のための試料調製法としては、種々の方法^{1)~7)}が報 告されている。

今回著者らは、種々の試料調製法の中から日常検査に使用出来、より簡便で精度の高い方法を見い出すことを目的として、簡易湿式灰化法(簡易法®)と塩酸抽出法を試みたところ良好な結果を得た。対象試料としては、保証値のある標準試料(ムラサキイガイ)を用いた。測定元素は、ナトリウム、カリウム、カルシウム、マグネシウム、亜鉛、鉄、マンガン(以下各々Na、K、Ca、Mg、Zu、Fe、Mnと記す)の7元素である。また、缶入りジュース類についても公定法"と塩酸抽出法との測定の比較を行ったので併せて報告する。

Ⅱ 実験方法

1.装置

原子吸光々度計:日本ジャーレル・アツシュ㈱製

A A - 1型

ブロックヒーター:ヤマト科学㈱HF-61型 (60本掛け)

2. 試薬

塩酸,硝酸,硫酸:和光純薬工業㈱製有害金属測定用 過酸化水素:関東化学㈱製原子吸光分析用

千葉県衛生研究所

(1988年9月30日受理)

塩化ストロンチウム:和光純薬工業㈱製原子吸光分析 用

- 標準液:和光純薬工業㈱製Na, K, Ca, Mg, Zn, Fe, Mnの各1000ppm 田時希釈し使用
- 4. 標準試料:国立公害研究所製環境標準試料NIES No.6 ムラサキイガイ

80℃, 4 時間乾燥後使用

5. 缶入りジュース類: J-1 (10%オレンジジュース)

J-2 (10%パインジュース)

J-3 (コーヒー飲料)

J-4 (100%トマトジュース)

J-5(100%野菜ジュース)

6. 試料調製法

簡易法:標準試料約0.2gを10ml容量試験管に精秤採取し、硝酸、過酸化水素を加えブロックヒーターの温度を徐々に上げ120℃として分解、乾固した。これに0.1N硝酸を加え一定量とした。但しCa測定用試料溶液は、1%ストロンチウム溶液となるように調整した。

塩酸抽出法:標準試料は約0.5g,ジュース類は約10gを50mℓ容量遠沈管に精秤採取し,IN塩酸20mℓを加え30分間振とう抽出後,遠心分離し上澄を分取して試料溶液とした。 Caについては簡易法と同じ。

公定法:食品衛生法に準じ300ml容量ケルダールフラスコに、ジュース類各々約100mlを精秤採取し硫酸、硝酸、過酸化水素で分解後蒸留水で一定量とし、これを試料溶液とした。Caについては簡易法と同じ。

7. 測定

フレーム原子吸光(アセチレン-空気)を用い各元素の測定波長で試料溶液を直接噴霧し測定した。試料溶液は、測定元素により適宜希釈して用いた。

Ⅲ 結果および考察

1. 標準試料中の簡易法,塩酸抽出法による7元素の測定値の比較

表 1 に結果を示した。簡易法では保証値に対し 7 元素とも $95\sim108\%$ と良い回収率を示し、再現性においても変動係数 $2\sim5$ %と良好な結果が得られた。また塩酸抽出法ではNa, Mg, Zn, Mn $\sigma 93\sim102\%$ の回収率、変動係数 $0\sim6$ %と良い結果が得られた。しかし、Ca, Fe の変動係数は各々<math>0.1%, 3% と再現性は良かったが,回収率は77%, 67% と余り良い結果が得られなかった。

2. ジュース類中の公定法,塩酸抽出法による7元素の測定値の比較

表2に結果を示した。公定法および塩酸抽出法の測定値は一致した。 J-4, J-5のように有機物の多い試料でも公定法同様に、塩酸抽出法を適用することが出来た。

以上のことから公定法は時間,場所,試薬を多く必要とする難点があるが,それに比べて簡易法はブロックヒーターを使用することにより,一度に多数の検体を処理出来る利点をもつ。塩酸抽出法も時間と試薬の少量化が出来,汚染の機会も少ない利点を持ち日常検

査に必要な簡便性を満した。また精度も、簡易法、塩酸抽出法共に良好であった。しかし、食品中に含有される金属は、その存在形態(化学形)に違いがある為、食品の種類や測定する元素により、試料調製法を選択する必要がある。

IV まとめ

今回検討した7元素(Na, K, Ca, Mg, Zn, Fe, Mn)については、簡易法、塩酸抽出法共に再現性の良い試料調製法であること、および日常検査に必要な簡便性と正確性を確認した。

文献

- 1) 厚生省生活衛生局監修:食品衛生小六法(新日本法規)
- 2)日本食品工業学会,食品分析法編集委員会編:食品分析法(光琳)
- 3) 安井, 小泉, 堤:分化, vol. 30, T65~71 (1981)
- 4) 堤,小泉,吉川,森井,小林:食総研報No.34,132 ~140(1979)
- 5)堤,小泉,吉川:分化vol. 25, 155~160 (1976)
- 6) Puchyr & ShaPiro : J. Assoc. Off. Anal. Chem. 69, 868~870 (1986)
- 7) 岡本, 不破:分化31年会(1982)
- 8)福島,藤代:千葉衛研報告No.4,55~59(1980)

表 1	標準試料中の簡易法	塩酸抽出法による	7元素の測定値の比較

	簡 易 法	塩酸抽出法	保 証 値	
Na	0.99 ± 0.02	1.01 ± 0.02	1.00 ± 0.03	
K	0.55 ± 0.01	0.53 ± 0.01	0.54 ± 0.02	
Са	0.14 ± 0.00	0.10 ± 0.01	0.13 ± 0.01	
М д	0.20 ± 0.01	0.20 ± 0.00	0.21 ± 0.01	
Ζn	111±6	1 0 7 ± 1	106±6	
Mn	1 6.7 \pm 0.4	15.2 ± 0.9	16.3 ± 1.2	
Fе	1 5 4 ± 4	1 0 6 ± 3	158±8	

平均値土標準偏差

n = 10

単位:%(Na, K, Ca, Mg)

 $\mu g/_a$ (Z n, M n, F e)

表 2. ジュース類中の公定法,塩酸抽出法による 7元素の測定値の比較

秦	N a		K		Са		Mg	
試方法	公 定 法	塩酸抽出法	公定法	塩酸抽出法	公定法	塩酸抽出法	公定法	塩酸抽出法
J – 1	15±0	1 4 ± 0	1 2±0	1 2 ±0	7.8 ± 1.1	7.3 ± 0.4	6.5 ± 0.3	7.2 ± 0.2
J-2	9 ± 0	9 ± 1	2 2±0	2 1 ±0	7.1 ± 0.3	8.3 ± 0.3	8.4 ± 0.6	8.6 ± 0.2
J - 3	25±1	2 4 ± 0	58±1	57±1	6 1.5 ± 1.8	63.8 ± 0.9	34.0 ± 1.0	34.5 ± 0.3
J - 4	1 0 4 ±6	1 0 1 ± 1	162±3	156±3	2 8.6 ± 1.3	2 98 ± 0.5	84.3 ± 1.1	8 6.9 ±0.6
J — 5	269±1	273±0	2 1 7 ± 5	2 1 1 ± 5	4 9.2.± 1.9	5 0.0 ± 1.1	1 3 4.3 ± 2.1	1 4 1.3 ± 1.2

「京	Z n		Мп		Fe	
試方法	公定法	塩酸抽出法	公定法	塩酸抽出法	公定法	塩酸抽出法
J - 1	0.1 ± 0	0.1 ± 0	不検出	不検出	0.2 ± 0	0.3 ± 0
J - 2	0.2 ± 0	0.2 ± 0	0.3 ± 0	0. 2 ± 0	0.9 ± 0.1	0.8 ± 0.1
J-3	0.7 ± 0.1	0.7 ± 0.1	0.1±0	0.1 ± 0	0.3 ± 0	0.3 ± 0
J – 4	1.0 ± 0.1	1.0 ± 0.1	0.5±0.1	0.5 ± 0	1.4 ± 0.1	1.4 ± 0.1
J - 5	1.6 ± 0.1	1.7 ± 0.1	0.9 ± 0.1	0.9 ± 0	9.3 ± 0.4	9.9 ± 0.3

平均值土標準偏差

n = 3

単位:^{mg}/_{100g} (Na,K)

 $\mu g/g$ (Ca, Mg,

Zn, Fe, Mn) 不検出:0.1^{μg}/₄ 未満