NO. R01C-1-1

作成日 令和元年 6月11日

分 野	1. 土木		工種	3. 道 路						
技術の名称	セラグシタールPRO					番号				
文門の石が										
副題(商煙名等)	 高い中性化抑制をもつ、コンクリート表面含浸材				登録(申請)年月日					
田地区(四水口寸)										
		かの項目に適合(該当			(1)					
応募技術条件	✓	県内に本社のある建設								
チェック		県内に本社のある建設								
		県内に自社工場のある			<u>:</u> もの(工場市				
	右番号から選択	1 1 1 1 1 1 1 1 1 1 1		生の向上	<u> </u>	右番号から選抜				
		2 安全性向上	7 その1	也			2 材料			
効 果	3	3 品質の向上	効果を選択し	た理由を	分 類	2	3 機械			
	3	4 工期の短縮		持徴に含めて		_	4 情報			
		5 環 境	記入してくだ	さい			5 その他			
開発者	会社名	有限会社タートル								
(提案者)	住所	千葉県香取市佐原イ	3840		TEL	0478-57-33	393			
	会社名 有限会社タートル									
問合せ先	担当部署	旦当部署 営業								
	氏名	篠藤修一								
	住所	千葉県香取市佐原イ3840								
	TEL	0478-57-3393			FAX	0478-57-32	249			
	URL	http://xnmck0a9jr95jyz5a.com/								
	E-mail	mokutech.k@nifty.com								

概要 圏央道橋脚工事などで多くの公共工事実績を持つ、弊社ファインクリスタルS工法を、さらに改良したコンクリート表面含浸材。含浸材塗布の1工程ですみ、散水養生等も不要と施工性が非常に高く、かつ、安価に施工できる。また、本材料は、完全無機ガラス材料なので、改質効果は長期にわたり持続する。新設コンクリートだけでなく、既設コンクリートへの施工も可能であり、本材料による表層部緻密化は予防保全や補修工事にも効果的。

特徴 ①中性化抑制性能が非常に高い(JSCE-K 572-2010試験にてグレードA) ②施工性向上(含浸材の浸透力を向上させた) ③コスト縮減(含浸させやすくなり、施工手間が減少) ④完全無機ガラス材料なので、紫外線や風雨による性能劣化はほぼなく、性能維持のための再塗布が必要なく、経済性に優れる

施工方法 ①素地調整 (水平面新設の場合)レイタンス除去 (既設の場合)高圧洗浄

- ①本材料塗布(基準使用量0.2~0.3kg/㎡、下地状態により変動)
- ②乾燥養生 ③完成

施工・材料単価(従来との比較) 本材料に対する従来材料は「ケイ酸塩系表面含浸材」であるが、これらの㎡当り材料価格の平均値は¥1560(建設物価2019年6月号p193)に対して、本材料の㎡当り材料価格は¥750である【材料の設計価格 20kg缶¥60,000(消費税、運賃別)、使用量0.25kg/㎡として計算】

適用条件・範囲 ①自然条件:施工面5℃以下での施工は避ける。②現場条件:コンクリート表面が素地のままであること。③新設の場合、打設後3週間以降の施工が望ましい。

施工・使用後の環境への影響 本材料の施工後の特徴は

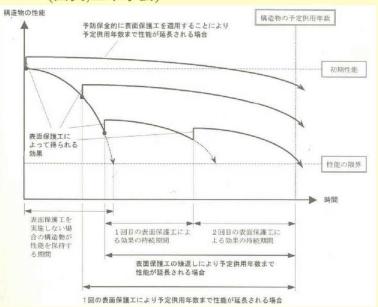
- ①躯体外観に変化がなく、透湿性も確保しているので、コンクリート内部に水分をとどめない
- ②コンクリートの表層部の緻密化、磨耗抑制により、剥落事故の防止につながる

施工・使用上の留意点

①下地処理における断面修復およびひび割れ補修には、材料の浸透を阻害しない無機系材料を推奨 ②既設コンクリートにおいて、劣化過程が進展期の段階にある場合、断面修復工等の前処理を行う。この場合に使用する断面修復材も無機系材料を推奨

実績状況(相手先、件数など)

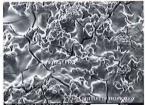
セラグジタールPROとしては、民間工事12件(内、県内2件)

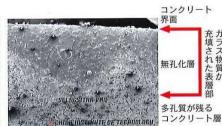

改良前の弊社工法(ファインクリスタルS)としては、100件以上(内、国交省直轄工事8件など)

その他(特許番号、各種適合基準、グリーン購入法、建設技術審査証明書・GISなど)


表面保護工を適用した ト構造物の性能

表面保護工の有無とコンクリート 構造物の劣化または性能低下と の関係は、劣化要因と劣化度、構 造物の置かれる環境条件及び使 用条件により異なるが、定性的に は図のような概念図で表すことが できる。一般に、表面保護工を施 さない場合には、中性化や塩化物 イオンの拡散などによって、コンク リート構造物の劣化が進行するが、 補修時などに表面保護工を施した 場合には、その後の劣化因子の 侵入が抑制され、構造物の耐久 性能の低下を遅らせることができ る。一方、建設当初から構造物の 耐久性向上を目的に予防保全的 に表面保護工を施した場合には 当初から劣化の進行を緩やかに することが可能であり、これに適 切な表面保護工を追加適用すれ ば、コンクリート構造物の設計耐 用期間を更に延伸することも可能


【出典: 土木学会】


電子顕微鏡で撮られ クリートの写真

未処理コンクリート表面

セラグシタールPRO 処理されたガラス化表面

充填された表層部

セラグシタールPRO 処理されたガラス化断面

表面含浸材の試験
1. 1 中性化に対する抵抗性試験

表面含浸材の試験として『けい酸塩系表面含浸材の性能試験(JSCE-K 572-2010)』に準拠し、促 進中性化試験を行った。試験状況と試験結果を以下に示す。

写真1. 1 試験体および試験状況

中性化試験の結果を**表 1. 1**に示す。試験開始から 28 日後における試験体の中性化深さは 1であり、原状試験体は 3.5mm である。また中性化深さ比は 61%となった。

	試験体				原状試験体				
No.	中性化 深さ1 (mm)	中性化 深さ2 (mm)	平均 深さ (mm)	中性化 深さ (mm)	中性化 深さ1 (mm)	中性化 深さ2 (mm)	平均 深さ (mm)	中性化 深さ (mm)	中性化 深さ比 (%)
1	1.9 2.2 2.0	2.0 2.5 2.5	2.2		3.8 3.7 3.8	3.3 4.3 3.3	3.7		
2	1.9 2.4 1.9	1.4 2.5 2.6	2.1	2.2	3.4 3.8 3.5 3.5 3.5 3.2 3.5	3.5	61		
3	1.7 2.5 2.4	2.0 2.3 2.3	2.2		3.3 3.9 3.4	4.0 3.2 3.1	3.5		

【上段】表面保護工(表面含浸工を含む)による性能向上。出典 土木学会 コンクリートライブラリー119 表面保護工法 設計施工 指針(案)p3

【中段】本材料塗布後の電子顕微鏡写真。出典 千葉工業大学 【下段左】試験成績書 試験場所:一般社団法人 施工技術総合研 究所 試験方法:JSCE-K 572-2010 中性化抑制率39% 【下段右】施工実績写真 一般住宅基礎