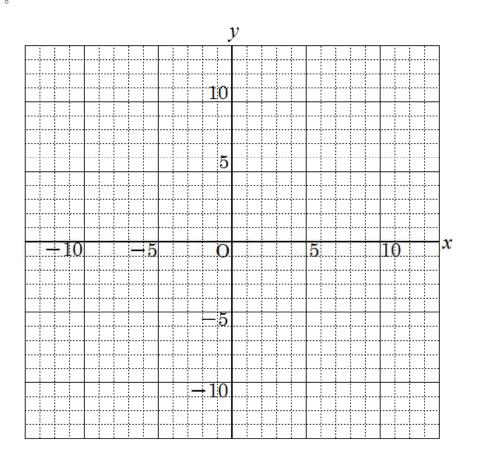
_____組 番 氏名

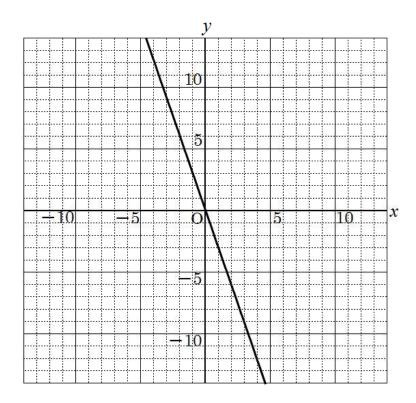
yは χ に比例し、 $\chi = -3$ のとき、y = 9である。このとき、次の問いに答えなさい。

(1) yを χ の式で表しなさい。

(2) グラフに表しなさい。



(1) $y = -3 \chi$



数学2 3章 一次関数 「一次関数の表,式,グラフ」 <準備問題②>

組 番 氏名

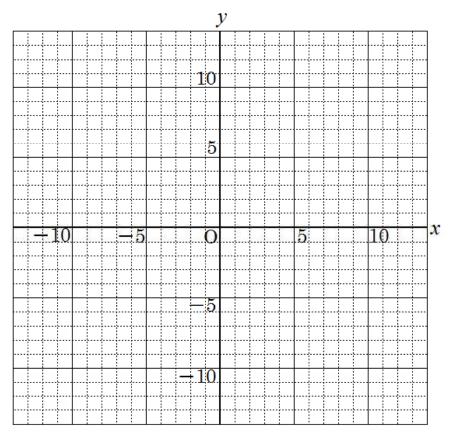
yは χ に反比例し、 $\chi=-3$ のとき、y=-4である。このとき、次の問いに答えなさい。

(1) yを χ の式で表しなさい。

(2) 表を完成させなさい。

χ	•••-12	-6	-4	-3	-2	-1	О	1	2	3	4	6	12
У							X						

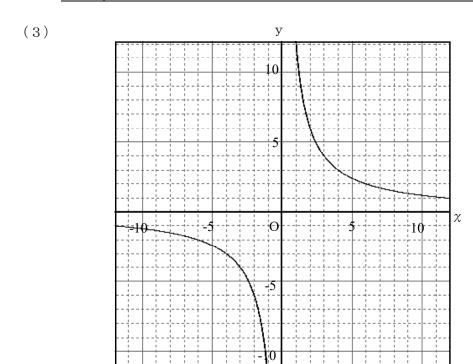
(3) グラフに表しなさい。



$$(1) y = \frac{12}{\gamma}$$

(2)

χ	•••-12	-6	-4	-3	-2	-1	0	1	2	3	4	6	12
У	··· -1	-2	-3	-4	-6	-12	×	12	6	4	3	2	1



数学2 3章 一次関数 「一次関数の表、式、グラフ」 <基本問題①>

組	番	氏名
Uatr .	. Ш	T-(-)

- 1 次の にあてはまる数やことばを答えなさい。
 - (1) y が χ の一次関数であるとき、一般的には、 a 、 b を定数として、 y = この形の式で表される。
 - (2)変化の割合は、 で求める。
 - (3) 一次関数においては、変化の割合は常に である。
- 2 次の(1),(2)について、yが χ の一次関数であるとき、変化の割合を求めなさい。

(1)	χ	··· - 2	- 1	0	1	2	3	• • •
	У	··· - 6	- 4	- 2	0	2	4	•••

- $(2) \quad \frac{\chi \quad \cdots \quad -4 \quad \cdots \quad 2 \quad \cdots}{y \quad \cdots \quad 7 \quad \cdots \quad -5 \quad \cdots}$
- 3 次の問いに答えなさい。
 - (1) 次の表のy がx の一次関数であるとき,y をx の式で表しなさい。

x	• • • •	-2 -	- 1	0	1	2	3	• • •
y	• • •	9	6	3	0	- 3	- 6	• • •

(2) 次の表のyがxの一次関数であるとき,yをxの式で表しなさい。

<u>x</u>	$\cdots -4 -2$	0	2	4	6	• • •
y	$\cdots -6 -4$	- 2	0	2	4	

数学2 3章 一次関数 「一次関数の表,式,グラフ」 <基本問題①・解答>

1

- (1) $y = a \chi + b$
- (2) 分子・・・・ yの増加量 ,分母・・・・ χの増加量
- (3) 一定

2

(1) 2

(2) - 2

-【解説】-----

- (1) χ が 1 増加すると、 y が常に 2 増加する。
- (2)χが6増加 ··· - 4 χ • • • 7 \cdots -5 \cdots yが12減少

よって,
$$\frac{y \circ 4 \pi}{\chi \circ 4 \pi} = \frac{-12}{+6} = -2$$

3

 $(1) y = -3 x + 3 \qquad (2) y = x - 2$

—【解説】——

- (1) 変化の割合は -3, 切片はx=0 のときのyの値 3 である。
- (2) 変化の割合は 1, 切片はx = 0 のときのyの値 -2 である。

組 番 氏名

次の(1) \sim (3) の一次関数のグラフの傾きと切片をいい、グラフをかきなさい。

(1) $y = -3 \chi + 2$ 傾き

切片

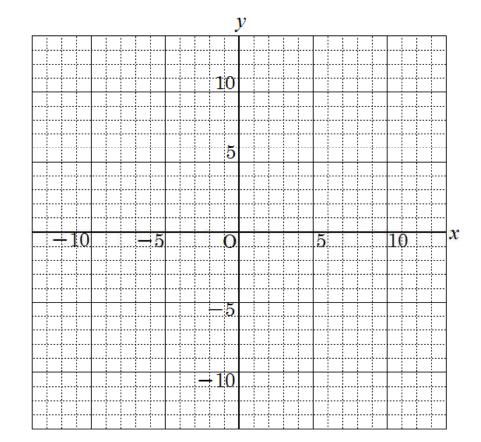
 $(2) y = \chi - 3$ 傾き

切片

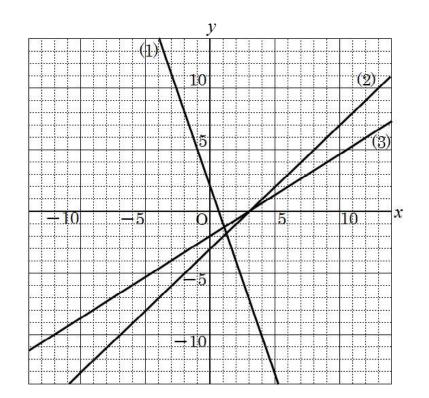
(3) $y = \frac{2}{3} \chi - 2$

傾き

切片



- (1) 傾き -3 切片 2
- (2)傾き 1 切片 -3
- $(3) 傾き <math>\frac{2}{3}$ 切片 -2



_____組 番 氏名

次の各グラフについて, 傾きと切片を読みとり, 式に表しなさい。

(1) 傾き:

切片:

式:

(2) 傾き:

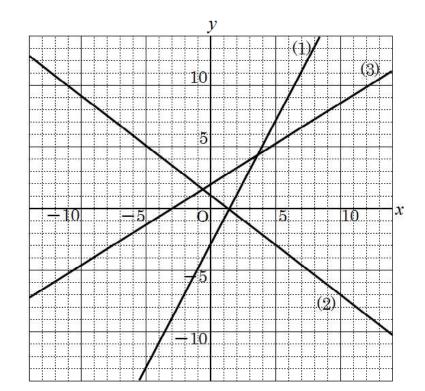
切片:

式 :

(3) 傾き:

切片:

式:



(1) 傾き: 2 切片: -3 式:y = 2x - 3

(2) 傾き: $-\frac{4}{5}$ 切片: 1 式: $y = -\frac{4}{5}x + 1$

(3) 傾き: $\frac{2}{3}$ 切片: 2 式: $y = \frac{2}{3}x + 2$

組 番 氏名

次の直線の式を求めなさい。

- (1) 点(2, -4) を通り、傾きが $-\frac{2}{3}$ の直線
- (2) 点 (-2, 3) と点 (-6, -5) を通る直線
- (3) 点 (-1, 2) を通り、直線 y = 3x 2 に平行な直線

(1)
$$y = -\frac{2}{3}x - \frac{8}{3}$$
 (2) $y = 2x + 7$ (3) $y = 3x + 5$

【解説】

$$y = -\frac{2}{3}x + b$$
 に、 $x = 2$ 、 $y = -4$ を代入すると
 $-4 = -\frac{2}{3} \times 2 + b$
 $-4 = -\frac{4}{3} + b$
 $b = -\frac{8}{3}$ したがって、 $y = -\frac{2}{3}x - \frac{8}{3}$

(2) 2点(-2, 3), (-6, -5)を通る直線の傾きは

$$\frac{3 - (-5)}{(-2) - (-6)} = \frac{8}{4} = 2$$

よって、求める直線の式を y=2x+b とする。

$$x=-2$$
, $y=3$ を代入すると $(x=-6$, $y=-5$ を代入してもよい。) $3=-4+b$

$$b=7$$
 したがって、 $y=2x+7$

(3) 直線 y = 3 x - 2 と平行なので、傾きは3

よって、求める直線の式をy = 3 x + bとする。

$$X = -1$$
, $Y = 2$ を代入すると

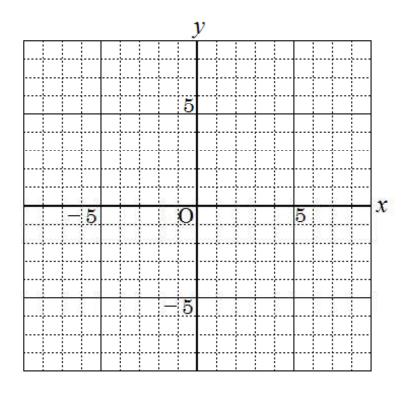
$$2 = -3 + b$$

$$b = 5$$
 したがって、 $y = 3x + 5$

_____組 番 氏名

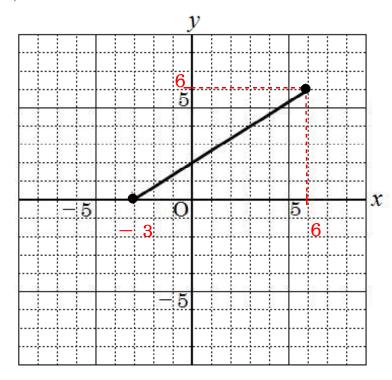
次の問いに答えなさい。

(1) χ の変域が $-3 \le \chi \le 6$ のとき、 $y = \frac{2}{3} \chi + 2$ のグラフをかきなさい。



(2)(1)のyの変域を求めなさい。

(1)



-【解説】 -----

 $-3 \le \chi \le 6$ の範囲で対応表を作ると、次のようになる。

χ	- 3	• • •	6
У	0		6

これに基づいて, グラフをかいたり, yの変域を求めたりする。

 $(2) 0 \le y \le 6$

数学2 3章 一次関数 「一次関数の表、式、グラフ」 <応用問題②>

組 番 氏名

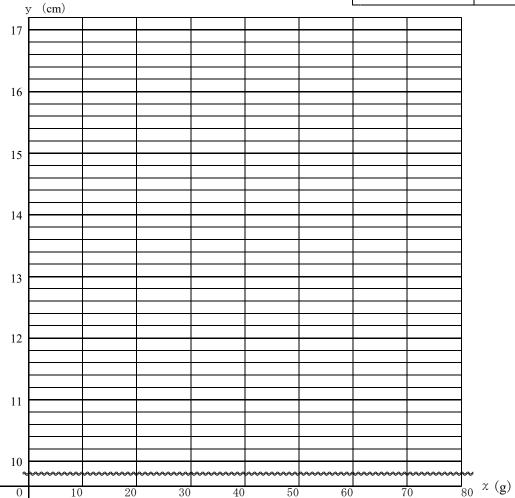
右の表は、あるバネにおもりをつり下げたときの バネの長さについて調べた結果をまとめたものです。

このとき、次の(1)~(4)の問いに答えなさい。

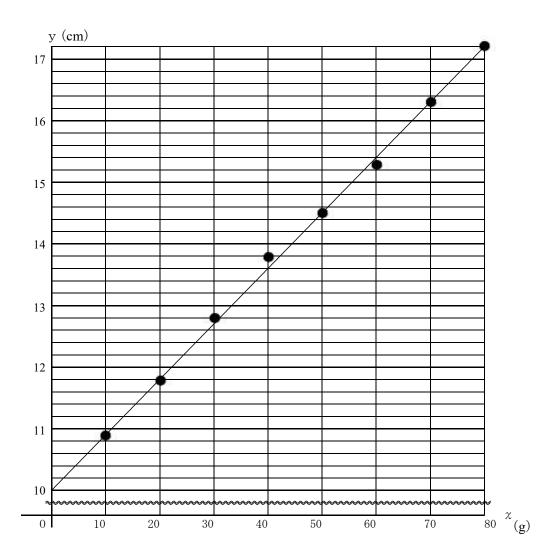
(1) おもりの重さが χ gのときのバネの長さを γ cm として, χ と γ の値の組を座標とする点を,下の図に書き入れなさい。

また、y & xの一次関数と見て、そのグラフを図にかき加えなさい。

おもりの重さ(g)	バネの長さ(cm)
1 0	10.9
2 0	11.8
3 0	12.8
4 0	13.8
5 0	14.5
6 0	15.3
7 0	16.3
8 0	17.2



- (2)(1)の関数の式を求めなさい。
- (3) おもりをつり下げないときのバネの長さを予想しなさい。
- (4) 100gのおもりをつり下げたときのバネの長さを予想しなさい。



- (2) y = 0. $0.9 \chi + 1.0$
- (3) 10cm
- (4) 19cm

- 【 解説 】

- (2) (0, 10) や, (10, 10.9), (20, 11.8), (70, 16.3), (80, 17.2) を通る直線と見て考えると、解答例になる。直線の引き方によって、これに近い式であってもよい。
- (3), (4) は, (2) にもとづいて考える。

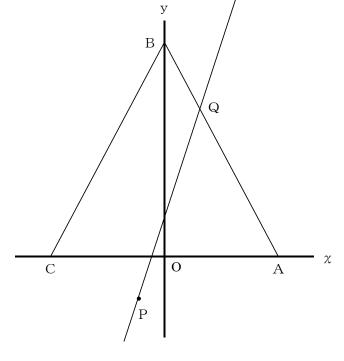
組_____番___氏名

右の図で、点A、点B、点Cの座標は それぞれ(4,0),(0,8),(-4,0) である。

また,点Pの座標は(-1,-2)であ り, 点Qは点Pを通る直線と線分ABとが 交わった交点である。

このとき,次の問いに答えなさい。

(1) 点Pを通る直線 $y = a \chi + b が,$ 線分ABと交わるためのaの取り得 る値の範囲を答えなさい。



(2) 直線 P Q が原点を通るとき、四角形 O Q B C の形を答えなさい。また、その理由も書きなさ い。

(3)(2)のときの四角形OQBCの面積を求めなさい。

数学2 3章 一次関数 「一次関数の表、式、グラフ」 <応用問題③・解答>

$$\begin{array}{c} (1) \\ \hline \frac{2}{5} & \leq a \leq 1 \ 0 \end{array}$$

(2) 台形

理由:直線PQが原点を通ることから、傾きは2、直線CBも傾きは2したがって、直線PQと直線CBの傾きが等しいので平行である。よって、四角形OQBCは台形である。

(3) 24

-【 解説 】-

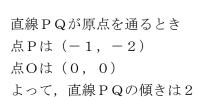
(1) ABと交わる直線のうち、最も傾きが大きいのは 点Pと点Bを通る場合。

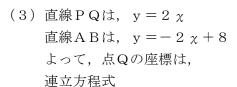
最も傾きが小さいのは点Pと点Aを通る場合。

直線
$$PA$$
の傾きは、 $\frac{2}{5}$

直線PBの傾きは、10







$$\begin{cases} y = 2 \ \chi \\ y = -2 \ \chi + 8 \end{cases}$$

の解となる。

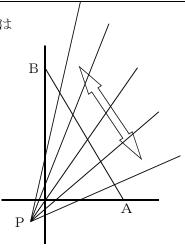
したがって、点Qは(2, 4)これらをもとに、

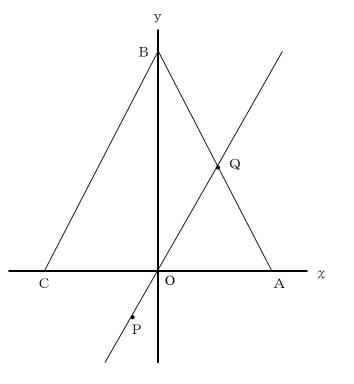
$$\triangle OQB = 8 \times 2 \div 2$$

$$= 8$$

$$\triangle OBC = 8 \times 4 \div 2$$

= 16 となるから。

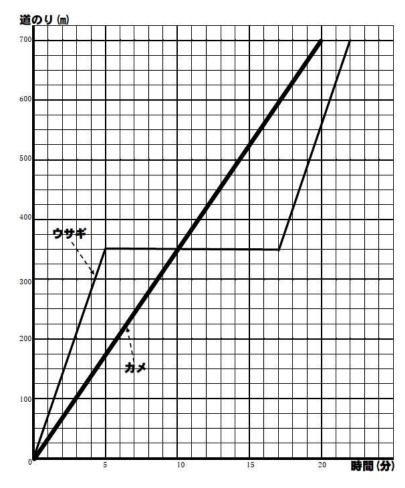




組 番 氏名

ウサギとカメが競走をしました。下の図は、ウサギとカメが それぞれスタートしてからゴールまでの時間と道のりを表して います。ウサギは、スタート後、途中で休憩してゴールに向か いました。カメは、スタートからゴールまで走り続けました。 このとき,次の問いに答えなさい。

- (1) スタート地点からゴール地点 道のり(1) までの道のりを答えなさい。
- (2) 先にゴールしたのはどちらか 答えなさい。また、その理由を 答えなさい。
- (3) ウサギが休憩していた時間を 答えなさい。
- (4) ウサギとカメがすれ違ったの は,スタートしてから何分後か 答えなさい。



- (5) ウサギとカメが同時にゴールするためには、ウサギは休憩時間を何分短くすればよいか答えな さい。
- (6)次の条件でウサギとカメが再び競争するとき,カメのスタート地点をウサギより何m前にすれ ば、同時にゴールできるか答えなさい。
 - ○ウサギとカメは、どちらも1回目の競争のときと同じ速さで進むものとする。
 - ○ウサギは、スタートした後、3分歩くと1分休憩を繰り返すこととする。
 - ○カメは、スタートした後、走り続けることとする。

数学2 3章 一次関数 「一次関数の表、式、グラフ」 <応用問題④・解答>

- (1) 700 m
- (2) 先にゴールしたのは「カメ」

(理由)・図より、ゴール地点に到着した時間が、ウサギが22分、カメが20分だから・図より、20分の地点で、ウサギが700mのゴール地点より手前にいるか、等

- (3) 12分
- (4) 10分後
- (5) 2分短くする
- (6) 245 m

【解説】

図の横軸(時間)をx軸、縦軸(道のり)をy軸として考え、xを時間、yを道のりとして考えた。

- (1) 図より、先にゴールしたのが、スタートして20分後であることがわかる。(x = 20) そのときの道のり (y = 4) は、700 mである。
- (2) 図より,ゴール地点(700m)に早く到着したのは,「カメ」とわかる。理由は,ウサギとカメのゴールの違いやカメがゴールした時のウサギの位置がわかる記述がされていればよい。
- (4) 図より、ウサギとカメがすれ違った地点は、交点となる。交点は、道のり350 m地点であるため、y=350 をカメの直線の式に代入し、時間を求める。

カメは、20分で700 m進み、原点を通る直線の関係から比例(y=ax)となるので、x=20、y=700 を代入し、a=35 となるので、直線の式は、y=35x である。

(カメの走る速さは、分速35mともわかる)

y = 350を、y = 35xを代入し、x = 10となる。

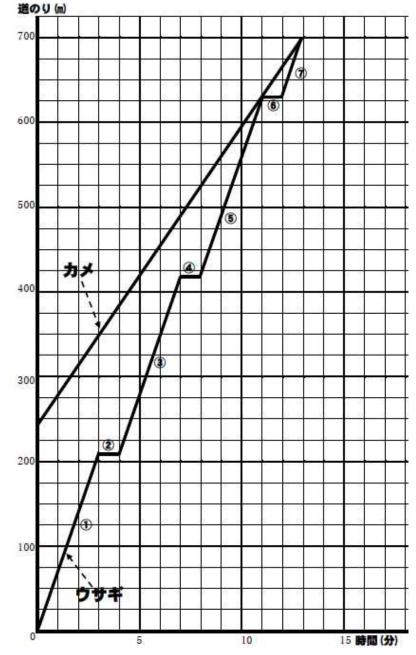
よって,スタートして10分後となる。

※図からも読み取ることができる。

- (5) ウサギの速さが、分速70m(傾き)で、残り350mを進むには、5分必要である。ゴール地点(700m)に20分で到着するためには、15分後にはスタートする必要があるため、2分短くする必要がある。
 - ※図より、休憩後のウサギのグラフを平行移動し、ゴール地点(700m)と合わせたとき、休憩の終わりが15分とわかるので、2分短くする必要がある。

- (6)条件より,ウサギの進み方は, 以下のとおりである。
- ・ウサギの速さが、図より、5分で 700 350m進むので、分速70mと なる。
- ①3分〈合計 3分経過〉歩く⇒210mまで進む
- ②1分〈合計 4分経過〉 休憩⇒進まない
- ③3分〈合計 7分経過〉歩く⇒420mまで進む (休憩後210m進む)
- ④1分〈合計 8分経過〉 休憩⇒進まない
- ⑤ 3 分〈合計 1 1 分経過〉 歩く⇒ 6 3 0 mまで進む (休憩後 2 1 0 m 進む)
- ⑥1分〈合計12分経過〉 休憩⇒進まない
- ⑦1分〈合計13分経過〉歩く⇒700m【ゴール】(休憩後70 m 進む)

ウサギは、ゴールするまで13分か かることがわかる。



カメは、分速35mで走るので、カメの直線の式(y=35x+b)で、ゴールするのが、13分で700m走ることから、

x = 13, y = 700を代入して, bの値(切片)を求める。

 $7 \ 0 \ 0 = 4 \ 5 \ 5 + b$

b = 245

となるので、カメのスタート地点をウサギより245m前にすることで、同時にゴールできる。