次の等式を〔 〕の中の文字について解きなさい。

(1) S = a b [b] (2)  $2 \chi + y = 1$  [y]

(3)  $2 \chi - y = 1$  [ $\chi$ ] (4)  $2 \chi - 3 y = -4$  [y]

$$(1) b = \frac{S}{a}$$

(2) 
$$y = -2 \chi + 1$$

$$\chi = \frac{y+1}{2} \qquad \qquad \text{別解} \quad \chi = \frac{y}{2} + \frac{1}{2}$$

次の問いに答えなさい。

(1) 次のア〜エの中で、二元一次方程式  $3\chi - y = 8$  の解になるのはどれですか。

$$\mathcal{T} \left\{ \begin{array}{l} \chi = 1 \\ y = 5 \end{array} \right. \qquad \mathcal{T} \left\{ \begin{array}{l} \chi = 0 \\ y = -8 \end{array} \right. \qquad \mathcal{T} \left\{ \begin{array}{l} \chi = 3 \\ y = 1 \end{array} \right. \qquad \mathcal{T} \left\{ \begin{array}{l} \chi = -3 \\ y = 4 \end{array} \right.$$

(2) 二元一次方程式  $\chi + y = 4$  の解を、下の表に表しなさい。

| χ | ··· - 2 | - 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | • • • |
|---|---------|-----|---|---|---|---|---|---|---|---|-------|
| У | •••     |     |   |   |   |   |   |   |   |   | • • • |

(3) 二元一次方程式  $2\chi + y = 6$  の解を、下の表に表しなさい。

| χ | ··· - 2 | - 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ••• |
|---|---------|-----|---|---|---|---|---|---|---|---|-----|
| У | •••     |     |   |   |   |   |   |   |   |   | ••• |

## 数学2 3章 一次関数 「二元一次方程式と関数」 <基本問題①・解答>

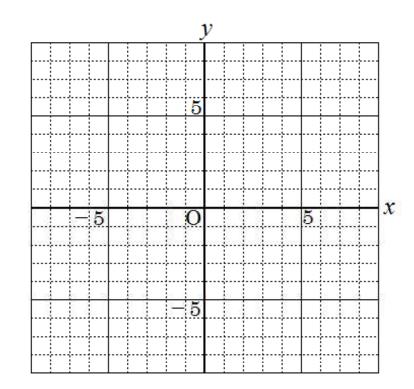
(1) イ,ウ

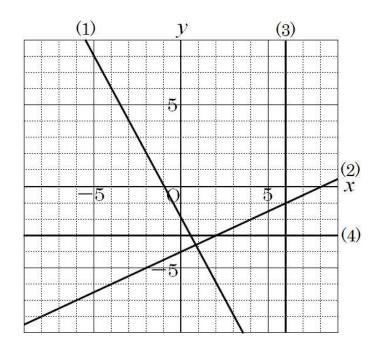
| (2) |   |     |            |            |   |   |   |   |   |   |   |    |   |
|-----|---|-----|------------|------------|---|---|---|---|---|---|---|----|---|
| (2) | χ | ••• | <b>-</b> 2 | <b>-</b> 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7  | • |
|     |   |     |            |            |   |   |   |   |   |   |   | -3 |   |

(3) 
$$\frac{\chi}{y} \cdots -2 -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \cdots$$

## -【解説】-----

- (1)  $\chi$ , yの値を式にあてはめて、等式が成り立つ場合を探す。
- (2)  $\chi$  の値を式にあてはめて、y の一次方程式として解く。 別解 二元一次方程式をy について解き、一次関数と見てy の値を求めてもよい。
- (3)(2)に同様。
- (4)  $\chi = 2$ , y = 2は, (2), (3) の両方の式を成り立たせる。両方の表を参照。


次の方程式のグラフをかきなさい。




$$(2) \quad \chi - 2 \quad y = 8$$

$$(3) \quad \chi = 6$$

$$(4) y = -3$$





## -【 解説 】-

(1)  $4\chi + 2y = -4$ を成り立たせる $\chi$ とyの組を,いろいろ調ベグラフに表す。

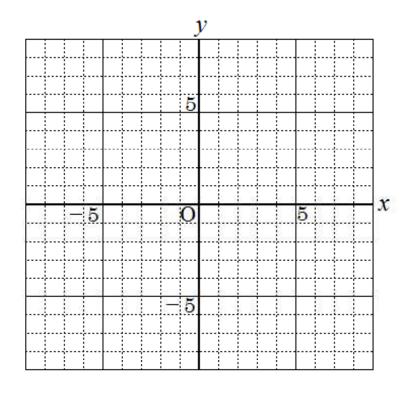
| - | χ | ••• | <del>- 2</del> | - 1 | 0          | 1  | 2          | • • • | <del>&gt;</del> | グラフに表す。 |
|---|---|-----|----------------|-----|------------|----|------------|-------|-----------------|---------|
| - | У |     | 2              | 0   | <b>-</b> 2 | -4 | <b>-</b> 6 | • • • |                 | クラフに衣り。 |

## 【別解】

$$4\chi + 2y = -4$$
 をyについて解き、一次関数の式を求め、グラフに表す。 
$$2y = -4\chi - 4$$
 
$$y = -2\chi - 2$$
 グラフに表す。

- (2)(1)と同様にグラフに表す。
- (3) 点(6,0) を通り、 $\chi$ 軸に平行な直線
- (4) 点(0, -3) を通り, y軸に平行な直線

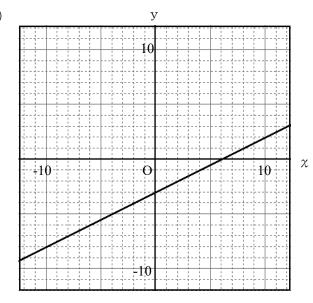
## 数学2 3章 一次関数 「二元一次方程式と関数」 <基本問題③>


組 番 氏名

次の問いに答えなさい。

(1) 二元一次方程式  $\chi - 2y = 6$ の解を表にまとめなさい。

| χ | • • • | -4 | - 2 | 0 | 2 | 4 | 6 | ••• |
|---|-------|----|-----|---|---|---|---|-----|
| У |       |    |     |   |   |   |   | ••• |


- (2) (1)  $kont, \chi, yo$ 変域をすべての数としたとき, χとyの値の組を座標とする 点の集まりを表しなさい。
- (3)(1)のグラフを,一次関 数のグラフと見たとき, 関数 の式を求めなさい。



(1)

| χ |       | -4         | - 2 | 0   | 2   | 4   | 6 | ••• |
|---|-------|------------|-----|-----|-----|-----|---|-----|
| У | • • • | <b>-</b> 5 | - 4 | - 3 | - 2 | - 1 | 0 | ••• |

(2)



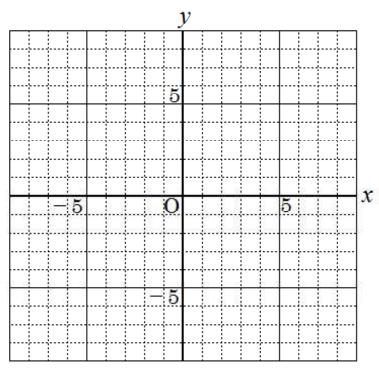
(3) 
$$y = \frac{1}{2} \chi - 3$$

### 【解説

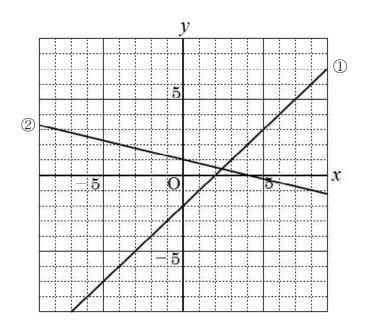
(1)  $\chi - 2y = 6$  に  $\chi$  の値を代入し、 y の一次方程式として y の値を求める。

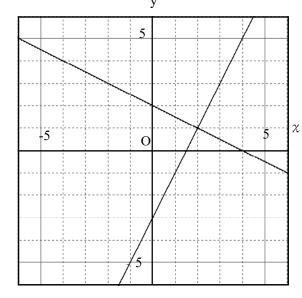
$$2 - 2 y = 6$$

$$-2 y = 6 - 2$$


$$-2 y = 4$$

$$y = -2$$


- (2) 前間 (1) の二元一次方程式を成り立たせる  $\chi$ , y は、小数の場合など限りなくある。 したがって、点の集まりは直線となる。
- (3) グラフから傾きと切片を読みとる。


1 次の連立方程式の解を、グラフをかいて求めなさい。

$$\begin{cases} \chi + 2 \ y = 4 \\ 2 \ \chi - y = 3 \end{cases}$$



2 右の2つの一次関数のグラフ①と②の交点の座標を求めなさい。





$$\begin{cases} \chi = 2 \\ y = 1 \end{cases}$$

$$(\chi, y) = (2, 1)$$
 などの表記  
でもよい。

2つの二元一次方程式を、それぞれ y について解き、一次関数のグラフとして表す。 連立方程式の解は, グラフの交点の座標になる。

$$\chi + 2 y = 4 
2 y = -\chi + 4$$

$$y = -\frac{1}{2} \chi + 2$$

$$2 \chi - y = 3$$
  
 $- y = -2 \chi + 3$   
 $y = 2 \chi - 3$ 

2

$$\left(\frac{12}{5}, \frac{2}{5}\right)$$
 (小数で表してもよい。)

## —【 解説 】 —

- ①の式は, y = x 2
- ②の式は、

$$y = -\frac{1}{4}x + 1$$

2つの式を連立方程式にして解を 求める。

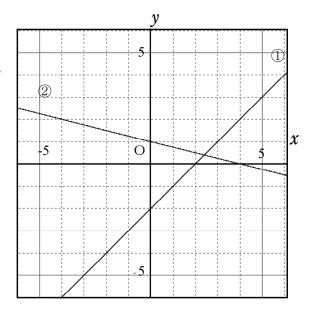
②の式を4倍して

$$4 \ y = -x + 4$$

yに x-2 を代入して

$$4 (x-2) = -x+4$$

$$4 \mathbf{X} - 8 = -\mathbf{X} + 4$$

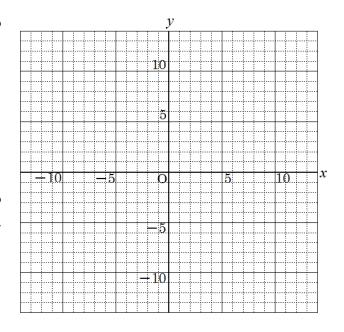

$$4 X + X = +8 + 4$$

$$5 X = 1 2$$

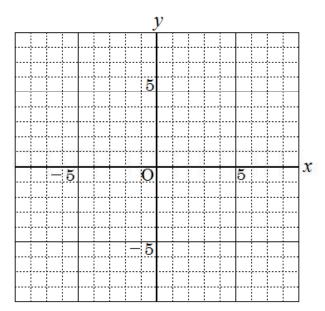
 $x = \frac{12}{5}$ 



$$y = \frac{2}{5}$$




次の(1),(2)の問いに答えなさい。


- 2元1次方程式  $y=-\frac{2}{3}\chi+8$  について、次の①、②の問いに答えなさい。下の図に グラフをかいて考えてもかまいません。
  - ① この方程式の解を整理した次の表の ア〜エにあてはまる数を答えなさい。

| χ | 0 | 1 | 2 | 3 | ••• |
|---|---|---|---|---|-----|
| у | ア | 7 | ウ | Н |     |

② この方程式を成り立たせる $\chi$ ,  $\chi$ の 組について、 $\chi$ の値とyの値がともに 正の整数となる場合をすべて答えなさ い。



(2) 2元1次方程式  $2\chi+3y=1$ を成り立たせる $\chi$ , yの組について,  $\chi$ の値とyの値が ともに整数となる場合を3つ答えなさい。下の図にグラフをかいて考えてもかまいません。



## 数学2 3章 一次関数 「2元1次方程式と関数」 <応用問題・解答>

(1) ① (
$$\mathcal{T}$$
) 8 ( $\mathcal{T}$ )  $\frac{22}{3}$  ( $\dot{\mathcal{T}}$ )  $\frac{20}{3}$  ( $\mathcal{T}$ ) 6

(2) 
$$(-1, 1)(-4, 3)(-7, 5)$$
 (3つ解答できて正答)  
他にも、 $(2, -1)(5, -3)(8, -5)(11, -7)$  などがある。

### 【解説

(1) ①
$$y = -\frac{2}{3}\chi + 8$$
 に $\chi$ の値を代入し、 $y$ の値を求める。

(ア) 
$$\chi = 0$$
 のとき、 $y = -\frac{2}{3} \times 0 + 8$  だから、 $y = 8$ 

(イ) 
$$\chi = 1$$
 のとき、 $y = -\frac{2}{3} \times 1 + 8$  だから、 $y = -\frac{2}{3} + \frac{24}{3}$  より、 $y = \frac{22}{3}$ 

(ウ)、(エ) も同様に求める。

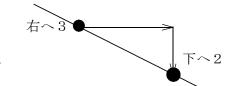
- ②・①より(3,6)があてはまる。同様にして、共に正の整数となる組を見つける。
  - $\cdot \frac{2}{3} \chi$  の値が整数になるとき、yの値も整数  $\Rightarrow \chi:3$ の倍数のとき、y:整数

 $\chi=3$ 、6、9以外の場合は、 $\chi$ 、yのいずれかが、0または負の整数になる。

- ・グラフをかいて、読みとってもよい。
- (2) χにいろいろな値を代入して調べてもよいが大変である。

そこで、 $2\chi + 3y = 1$ を変形してみる。

$$3 y = -2 \chi + 1$$


 $-2\chi+1$  が3の倍数なら, yは整数になる。

そこで、 $-2\chi+1$ の値を0、3、6、9として、 $\chi$ が整数になるか試してみる。

#### 【別解】

 $2\chi + 3y = 1$ を一次関数の式に変形してみる。

$$y = -\frac{2}{3} \chi + \frac{1}{3}$$
 傾きが、 $-\frac{2}{3}$ となる。



整数になる  $\chi$  と y の組を 1 つ見つければ、  $\chi$  を 3 増加させ、 y を 2 減少させて 別の組を見つけることができる。

(例えば) 
$$\chi = -1$$
 のとき、 $y = -\frac{2}{3} \times (-1) + \frac{1}{3}$ 

$$=\frac{2}{3} + \frac{1}{3} = 1$$

 $(\chi, y) = (-1, 1)$  から  $\chi$ が3増加、yが2減少より (2, -1) など