シンク排水阻集器による油脂分除去能向上に関する調査研究(2)

藤村葉子 横山智子 小島博義* (*千葉県環境生活部水質保全課)

1 はじめに

コンビニエンスストア (以下コンビニと称す) 設置 浄化槽排水は浄化槽の水質基準を大きく超えることが 多く、その原因は揚げ物類の製造過程で排出される油 脂分と利用者の多いトイレ排水からの高負荷原水が原 因であると考えられた¹⁾。その解決策の一つとして阻 集器製造会社が開発したシンク排水阻集器(以下「阻 集器」と称す)を設置して排水調査を行い、浄化槽排 出負荷削減等の可能性について検討した。

なお, 本研究は, 阻集器製造会社との共同研究であ り, 同会社の協力を得て実施した。

2 調査方法

千葉県の下水道計画区域外(現夷隅地域振興事務所 管内) にあるコンビニに設置された合併処理浄化槽6 基を対象とし(No.1-1~3, 2-1~3), 阻集器を店舗内の シンク下に取りつけ(図1)そのろ過水が流入する浄 化槽の原水(嫌気ろ床1室)と処理水(消毒前)の水 質分析を行った。2011年1月~2月に阻集器設置前の

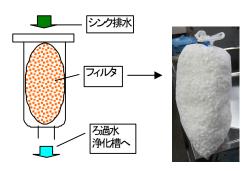
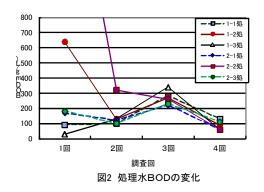


図1 シンク排水阻集器とフィルタ


調査を2回行い(1回目, 2回目), 2011年2月に設 置直後(3回目), 2012年3月に設置1年後の調査(4 回目)を行った。調査項目は,現場調査項目及びpH, SS, BOD, COD, TOC, T-N, D-T-N, NO₂-N, NO₃-N, NH₄-N, T-P, D-T-P, n-Hex (ノルマルヘキサン抽出 物質)等である。

3 結果と考察

表 1~3に浄化槽原水及び処理水の分析結果を示す。 表1より原水および処理水の有機物は阻集器設置前と

								衣! _		- ノヘヘト	/ 队巴/	ולו פויטו ת	VIVVIV 501	100 HL 1101 -	~ ·	(中位:	ilig/ L/								
	细木11.	1回目(阻集器設置前)						2回目(阻集器設置前)					3回目(阻集器設置直後)					4回目(阻集器設置1年後)							
	調査No.	SS	TOC	COD	BOD	ATU-BOD	n-Hex	SS	TOC	COD	BOD	ATU-BOD	n-Hex	SS	TOC	COD	BOD	ATU-BOD	n-Hex	SS	TOC	COD	BOD	ATU-BOD	n-Hex
原水	1-1原	200	90	73	320	-	30	200	76	98	280	-	51	780	78	110	760	-	1800	50	51	52	98	-	1
	1-2原	88	130	100	330	-	23	61	130	140	300	-	75	50	90	100	550	ı	2	1920	359	544	1200	-	660
	1-3原	150	70	56	140	-	19	130	78	110	240	-	20	460	79	110	640	-	9	380	143	190	540	-	79
床小	2-1原	210	130	150	420	-	30	440	250	307	890	-	17000	2200	270	420	1300	-	620	1800	985	1544	2600	-	190
	2-2原	3100	560	650	3700	-	8400	17000	2800	2400	6700	-	-	1000	70	93	4900	-	31	60	56	81	92	-	2
	2-3原	150	96	120	280	-	43	97	59	83	130	-	-	250	87	120	510	-	15	300	129	190	550	-	38
	平均値	650	180	190	870	-	1400	3000	570	520	1400	-	4300	790	110	160	1400	-	410	750	290	430	850	-	160
	1-1処	16	48	52	90	56	6	45	31	49	100	78	1	35	39	49	280	78	1	28	67	59	130	110	7
	1-2処	730	140	210	640	230	450	42	55	80	130	75	1	23	52	67	270	75	1	52	73	93	89	80	6
処理の	1-3処	14	33	42	29	23	5	47	37	66	130	94	5	63	58	87	340	170	4	34	46	58	58	46	3
处理力	2-1処	56	89	100	170	140	17	44	55	78	120	110	1	30	38	52	220	45	1	84	46	79	59	55	13
	2-2処	1600	170	290	2200	720	61	79	40	56	320	75	2	71	38	57	260	71	2	30	53	72	59	52	4
	2-3処	91	73	81	180	81	12	26	42	65	100	73	2	49	44	120	230	75	2	94	57	95	110	110	16
	平均值	420	92	130	550	210	92	47	43	65	150	84	2	45	45	72	270	86	2	54	57	76	84	76	8

							表2 コ	ンビニエン	ノスストア	設置浄化	槽排水水?	質調査結果	果2 態別	窒素	(単位:m	g/L)					
	調査No.	1回目(阻集器設置前)						2回目(阻集器設置前)				3回目(阻集器設置直後)					4回目(阻集器設置1年後)				
		T-N	D-T-N	NH4-N	NO2-N	NO3-N	T-N	D-T-N	NH4-N	NO2-N	NO3-N	T-N	D-T-N	NH4-N	NO2-N	NO3-N	T-N	D-T-N	NH4-N	NO2-N	NO3-N
医业	1-1原	54	45	38	< 0.1	0.29	110	95	93	<0.1	1.12	78	65	64	< 0.1	0.76	55	50	58	<0.1	< 0.1
	1-2原	170	130	130	< 0.1	0.33	130	120	120	<0.1	<0.1	130	130	120	0.23	0.83	180	130	130	<0.1	<0.1
	1-3原	110	95	94	< 0.1	0.42	120	97	96	0.2	0.89	120	100	100	0.15	0.45	74	59	70	<0.1	< 0.1
原水	2-1原	160	120	128	< 0.1	1.72	310	250	120	0.7	2.37	160	110	82	0.62	1.61	180	160	79	<0.1	< 0.1
	2-2原	260	74	70	0.8	2.64	550	140	100	< 0.1	0.86	140	110	100	1.84	13	140	120	120	0.1	< 0.1
	2-3原	140	100	100	< 0.1	0.35	110	110	103	<0.1	0.91	120	100	99	<0.1	0.53	120	94	88	<0.1	< 0.1
	平均值	149	94	93	0.2	1.0	222	135	105	0.2	1.0	125	103	94	0.5	2.9	125	102	91	0.1	<0.1
	1-1処	110	79	43	< 0.1	0.57	94	84	81	0.3	2.78	99	92	90	0.24	0.63	48	44	47	0.3	1.7
	1-2処	200	130	129	< 0.1	0.68	140	130	129	< 0.1	3.97	140	140	126	0.36	1.34	130	130	120	<0.1	0.1
処理水	1-3処	120	95	78	< 0.1	0.82	150	100	100	0.2	6.45	140	120	110	0.16	0.44	86	86	92	<0.1	<0.1
处理小	2-1処	150	120	120	0.1	0.33	150	140	133	0.3	6.39	150	130	128	0.16	2.34	140	140	120	< 0.1	< 0.1
	2-2処	200	77	74	0.9	2.28	93	82	78	<0.1	3.53	130	110	88	1.33	21	120	120	120	<0.1	< 0.1
	2-3処	120	100	100	0.1	0.31	120	98	97	< 0.1	0.55	130	110	109	0.13	0.41	110	110	110	< 0.1	< 0.1
	平均值	150	100	91	0.2	0.8	125	106	103	0.2	3.9	132	117	109	0.4	4.3	106	105	102	0.3	0.3
	4.70 1 I±1	ODELLZ	亚拉达士	笛山」た																	

	表3 =	コンビニエン	スストア設置	置浄化槽排:	水水質調査	結果3 態別	目全りん	(単位:mg/	/L)	
	-m-t-v	1回目(阻集	器設置前)	2回目(阻集	(器設置前)	3回目(阻集	器設置直後)	4回目(阻集器設置1年後)		
	調査No.	T-P	D-T-P	T-P	D-T-P	T-P	D-T-P	T-P	D-T-P	
	1-1原	3.3	2.6	6.8	5.0	6.9	4.4	3.7	2.9	
	1-2原	12.0	9.7	13.0	11.1	12.0	11.1	22.0	11.0	
原水	1-3原	8.0	6.8	9.8	8.4	9.8	7.3	9.2	4.4	
凉水	2-1原	13.0	7.3	16.0	10.5	16.0	8.6	19.0	11.0	
	2-2原	10.0	10.0	110.0	48.4	13.0	10.7	9.8	8.3	
	2-3原	11.0	7.7	8.7	7.5	10.0	7.7	9.4	6.2	
	平均值	10	7	27	15	11	8.3	12	7.3	
	1-1処	7.2	5.8	7.3	6.7	7.0	6.5	4.4	3.5	
	1-2処	8.3	11.0	13.0	12.7	13.0	12.3	12.0	11.0	
処理水	1-3処	7.7	6.9	9.4	7.9	10.0	8.4	7.7	6.8	
処理小	2-1処	12.0	9.0	11.0	8.9	10.0	9.4	9.2	7.9	
	2-2処	6.5	11.0	12.0	9.8	12.0	10.7	10.0	8.6	
	2-3処	11.0	8.0	9.3	8.3	11.0	8.8	10.0	7.9	
	平均値	8.8	8.6	10	9.1	11	9.3	8.9	7.6	

設置後で特に大きな変化は見られなかった。特に3回目は阻集器設置直後であったため、効果が表れにくかったといえる。4回目は阻集器設置後の浄化槽の清掃が行われた後で原水濃度も安定していたと考えられ、原水中のn-Hexは700mg/Lを超す高濃度のものは見られなかった。原水BODは設置前後で大きな低下は見られず、流入水の油脂分が除去された効果は表れなかった。しかし、処理水BODは設置前には高濃度な施設があったが、4回目(1年後)の値は100mg/L以下となる施設が多くばらつきも少なかった(図2)。

シンク排水阻集器はシンク排水の油脂分を除去する効果が認められているが(前報)²⁾その効果は,浄化槽の原水の有機物濃度を軽減するほど大きくはなかったと考えられる。一方,処理水濃度が安定する傾向があることから,浄化槽内の微生物による有機物の除去能力が向上していることが示唆され,油脂分による微生物の活動の阻害が抑えられる効果が期待できる。

しかしながら、合併処理浄化槽の排水基準は BOD 20mg/L であることから、阻集器の設置だけでは、排水を基準値以下とする大幅な改善には至らないことが推察された。

表2は原水と処理水の窒素成分であるが、阻集器の設置前後で原水、処理水とも TN は120mg/L 前後であり、またその大部分が NH4-N であることから浄化槽の処理による除去の効果は見られないといえる。これは2008年の浄化槽調査結果 1)と同様、コンビニ浄化槽は流入水と処理水の窒素成分の濃度がトイレ排水のみ処理する単独処理浄化槽に近く、高濃度なトイレ排水により、合併処理浄化槽の基準を満たすことが困難となっていると推測される。

表3は全りん濃度であるが、阻集器設置の前後とも

原水と処理水の濃度の差が小さく、処理水は T-P の大部分が D-T-P (溶存性全りん)であった。濃度はいずれも 10mg/L 前後であり、この傾向は 2008 年の浄化槽調査結果 1) と同様であった。

4 おわりに

今回の調査では全ての浄化槽に阻集器設置の効果が 見られたわけではないが、施設 2-2 等は明らかに処理 水質が改善された。また浄化槽の悪臭についても調査 時の印象では軽減されていると感じた。

本調査コンビニの来客数はおおむね 1000~2000 人/日で設置トイレ数は 2 から 4 の範囲であったが、浄化槽の大きさは 14 人槽から 30 人槽であった。これらの条件の違いによる水質への影響は不明であったが、浄化槽構造基準の最低ラインの大きさでは、コンビニの排水を処理するには不足であると考えられる 1)。また、既に設置されているコンビニ浄化槽については、まず、阻集器により油脂分を除去した上で、ばっ気風量の増加、清掃回数の増加等の対策を実施して基準値までの水質改善を目指すことが望ましいといえる。

---謝辞----

調査を行うにあたり御協力をいただいたコンビニ エンスストアの方々に深くお礼を申し上げます。

—引用文献—

- 1) 小島博義 藤村葉子 強口英行 石橋大樹 松崎 茂樹: コンビニエンスストア設置浄化槽の排水水質と 処理性能, 用水と廃水, 53(6), 55~62(2011)
- 2) 横山智子 藤村葉子,中田利明,小島博義:シンク排水阻集器による油脂分除去能向上に関する調査研究(1),千葉県環境研究センター年報(2013)