降雨時における道路排水の水質特性調査

横山智子 中田利明* 星野武司 横山新紀 (*:千葉県企業局工業用水部施設設備課)

1 はじめに

印旛沼(図 1, 地理院タイル ¹⁾ 一部加工)では、化学的酸素要求量(以下、COD)の環境基準を達成しておらず、より効果的な対策が求められている。印旛沼流域では、生活排水や事業場排水などの対策により、特定汚染源の負荷量は着実に減少している。一方で、非特定汚染源(以下、面源)の負荷量の寄与割合が増加している(図 2)²⁾。

面源のうち市街地による負荷は、降雨時に流出するが、道路、宅地等様々な汚染源が存在し、汚濁の流出実態が不明な負荷源の一つである。そこで、市街地負荷のうち、降雨時に道路から排水される負荷に着目し、流出特性に関する調査を行った。

2 調査方法

2・1 調査場所

調査は、印旛沼流域を東西に貫く幹線道路である北千葉道路において、道路外からの粉塵等の影響を受けにくい橋梁部(図 1)で行った。降雨は路肩の排水溝を経て横引き配管に集水され、一定区間ごとに縦配管により橋脚の下の桝に落下する。採水は、この桝に排水受けを設置して実施した。なお、雨水はこの後、処理桝や調整池を経由して捷水路に放流される。

2・2 採水日及び調査方法

自動採水器により橋脚下の排水桝から降雨時に流出する道路 排水を採水した(図 1)。2019年度に採水及び分析を行った 6 回の降雨諸元及び各項目の初期濃度を表 1 に示す。

ここで、表1の先行晴天日数とは、気象庁の佐倉観測所3において、降雨が日量0.5 mm 未満の日数とした。また、初期濃度とは流出直後に採水した試料の分析値である。なお、6月29日は、採水した試料を流量比で混合し、コンポジット1試料として分析した値を()で表記した。採水は、8月23日と11月3日は、排水開始直後を採水し、他の日は降雨時の濃度変化をとらえるため、異なる採水間隔で採水を行った。

図 1 調査場所と採水状況 地理院タイル¹⁾一部加工

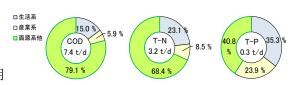


図2 流入負荷量の割合(H30年度)

排水量は、JISにより採水箇所の約3.6m下流に直角三角堰を設けて算出した。

分析項目は、pH, COD, 全窒素(以下、T-N)、硝酸態窒素(以下、 NO_3-N)、アンモニア態窒素(以下、 NH_4-N)、全りん(以下、T-P)、りん酸態りん(以下、 PO_4-P)、電気伝導度及び懸濁物質である。分析法は JIS に準拠して行った。なお、降水量は佐倉観測所 3のデータを使用した。

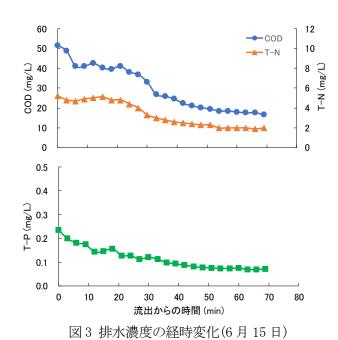

3 結果

表 1 から初期濃度は、COD が 37.2~80.5 mg/L、T-N が 5.2~7.4 mg/L、T-P が 0.09~0.37 mg/L であった。 印旛沼の環境基準点である上水道取水口下の平成 28~30 年度における水質の年平均値は COD、T-N 及び T-P が 11, 2.4, 0.15 mg/L⁴⁾である。道路排水の初期濃度は、沼内濃度に比べて、COD で 3~7 倍、T-N で 2~3 倍、T-P で 0.6~3 倍であり、初期濃度と沼内濃度との乖離が最も大きかったのは COD であった。また、NO3-N が T-N の半分近くを占めていた。

項目	2019/6/15	2019/6/29	2019/8/23	2019/10/10	2019/11/3	2020/2/13
調査時間 (min)	69	345	流出直後	1562	流出直後	345
採水間隔 (min)	3	15		5 ~ 300		15
先行晴天日数(日)	2	数時間	1	1	4	14
降雨強度 (mm/h)	2.5	0.5	0.0~0.5	0.5~16.5	0.5~10.0	0.5~3.0
COD	51.6	(17.5)	37.2	44.0	63.4	80.5
T-N	5.2	(2.7)	_	5.3	7.4	_
T-P	0.23	(0.15)	0.09	0.25	0.37	0.17
NO3-N	2.29	2.22	2.15	2.35	3.07	0.77
NH4-N	0.88	0.21	0.34	_	0.26	0.21
(備考)	経時変化	コンポジット	初期試料のみ	経時変化	初期試料のみ	経時変化

表1 降雨諸元及び各項目の初期濃度

図3に6月15日における排水開始から69分後までのCOD, T-N, T-Pの排水濃度の経時変化を示す。すべての項目において,排水開始直後が最も高濃度であり,時間の経過とともに濃度が低下しており,ファーストフラッシュの状況をよく示していた。この傾向は他の採水日についても同様であった。

引用文献

- 1) 国土交通省国土地理院:地理院タイル一部加工.
 - URL. https://maps.gsi.go.jp/development/ichiran.html (2020年8月時点).
- 2) 印旛沼水質保全協議会: 印旛沼について.
 - URL. http://www.insuikyo.jp/envieonment/yogore-2/(2020年8月時点).
- 3) 国土交通省気象庁:過去の気象データ検索.
 - URL. http://data.jma.go.jp/obd/stats/etrn/index.php (2020年8月時点).
- 4) 千葉県環境生活部水質保全課:公共用水域地点別水質測定結果データベース. URL. https://www.pref.chiba.lg.jp/suiho/kasentou/koukyouyousui/data/data 1.html(2020年8月時点).